Call Us at
844-ASK-GNRC
Find a Distributor
Find Service
Careers
Contact Us
Select your region
Europe
Africa
Latin America
Asia
Middle East
Oceania
Search for:
Generac Industrial Power
Menu
Search
Main navigation
Skip to content
Hide Nav
All About
All About
Generac Industrial Power
HVO
Hydrogen
Industrial Strength
Energy Management
Configured vs Standard
Generator Paralleling
Natural Gas Fuel
Natural Gas Reliability
Natural Gas Performance
Natural Gas Resources
Diesel Fuel
BI-FUEL™
Selecting the Best Fuel Option
Solutions By Industry
Solutions By Industry
Data Centers
Healthcare
Senior Living Solutions
Emergency Power Plan Form
Municipal
Telecommunications
Education
Manufacturing
Small Business
Government
Professional Resources
Professional Resources
Generator Specifying, Sizing and Comparison Tools
Generac City
Generac BIM Documents
Emissions Unit Converter
Heat Rate Calculator
Power Design Pro
Total Cost of Ownership Calculator
Information Resources
Case Studies
Video Gallery
News & Whitepapers
Industry News
PowerConnect Newsletter
Whitepapers
Continuing Education
Power Engineer Symposium
Professional Development Seminar Series (PDSS)
Product Documents
Brochures
Spec Sheets
Products
Products
Battery Energy Storage
SBE500 Stationary Battery Energy Storage
SBE1000 Stationary Battery Energy Storage
Diesel Generators
Configured
10kW - 30kW
35kW - 50kW
60kW - 80kW
100kW - 175kW
200kW - 250kW
275kW - 300kW
350kW - 600kW
750kW - 800kW
900kW - 1000kW
1250kW +
All Products…
Standard
All Products…
Transfer Switches and Controllers
Power Zone Controllers
G-Panel Controller
Specification Text
TX Series Transfer Switches
PSTS Transfer Switches
Gaseous Generators
Configured
< 35kW
35kW - 50kW
50kW - 70kW
70kW - 100kW
100kW - 150kW
150kW - 300kW
350kW - 450kW
500kW
625kW - 750kW
1000kW
All Products…
Standard
All Products…
BI-FUEL™ Generators
Configured
All Products…
Aftermarket Parts and Service
Webinars
Webinars
Select your region
Region navigation
Europe
Africa
Latin America
Asia
Middle East
Oceania
Search for:
Power Connect Newsletter
Share This Article
Understanding Demand Response
6/18/2019 12:00:00 AM
BY DAN BARBERSEK
Director of Energy Management Solutions at Generac Power Systems
INTRODUCTION
The phrase “Demand Response”, or DR, can have many different meanings, as well as many different approaches to achieve this request. With this being said, demand response has one main focus, and that is to reduce the load. The action can have several results, being either grid reliability or financial gain. This paper will explain these definitions and approaches.
GRID SUPPORT
DR programs, when driven by the local utility companies, can be summed up simply as “Grid Support”. This is where either by development planning or un-expedited growth, there are areas within the utility distribution system where customers could experience un-stable delivery of electricity. This can be a localized event or an entire distribution event. The challenge for the local utility is that some of these load levels are not always present. An example of this would be during a hot summer day when all of the air handlers turn on, this now causes an increase in this customers load levels. The challenge for the utility company is they can approach this two different ways. The first approach is they can build up power generation along with transmission capabilities to be able to support these loads. This, of course, is not easily achieved, permitting, right of way challenges can extend construction timelines and capital equipment comes at a great expense. The alternative to this approach is to have customers reduce, or just turn off, their loads.
REVENUE DRIVEN
Demand response can also be an event that the decision to reduce load is made by the end-user. This action is done to avoid high demand charges. By having the ability to reduce the loads, it will ensure that these load charges do not come into play.
Revenue driven demand response can be used several different ways. One would be peak shaving (see figure 1). This shows that a control system is constantly monitoring the client’s load levels. When the load starts to approach a load shed trigger, then a DR action is put into play. This could be anything that will reduce the load, like shutting down equipment and/or turning on local on-site generation.This action is solely triggered by site conditions and power requirements. These types of applications tend not to have long operation hours, typically 200 hours or less annually, and can be very sporadic depending on changing site conditions.
Another form of demand response is referred to as base loading. Unlike peak shaving, base loading (see Figure 2) is when a customer knows that this additional load is present every day and this load pushes them into the high demand rate charge category. This is now a daily occurrence and the facility will experience long daily operational hours of either partial operations or on-site generation.
HOW TO ACHIEVE DEMAND RESPONSE
There are several ways to achieve DR, either customer or utility driven. One of the easiest approaches is to just shed or turn off loads. The issue, however, is if the customer can operate without the equipment that is running at the time. It can be a very daunting task to find the right circuit breakers and to have the on-site personnel capable of performing this task both during and after the load shedding event.
A more secure approach is to utilize on-site generation. This can be accomplished by turning on the on-site generator and transferring the building load onto the generator which will result in load reduction. Having this on-site power generation for emergency back-up provides great benefits. Besides the most important benefit of life safety, this feature can keep daily operations going as to not affect the bottom line, as well as a place of refuge. Of course this comes at a cost, with the option of having DR these costs can be off-set, or in some cases actually achieve a true return on investment.
WHAT KIND OF GENERATORS CAN BE USED?
The EPA has very strict rules when it comes to running on-site generators when there is not an actual electrical outage at the site. If the generator is connected to a diesel engine, the engine must have a Tier 4 emissions rating. Tier 4 rated engines are 30% - 40% more expensive than everyday diesel engines. Tier 4 engines are only required when the units are either mobile or they are being used during non-emergency events. If the generator is connected to a natural gas engine, that engine generator must be labeled for non-emergency use. This labeling should come from the OEM. If the unit is labeled for emergency use the unit can be site certified, but this will have to be done every three years and becomes the sole responsibility of the end-user.
With careful planning demand respond has many different benefits including financially and increased system reliability.
For more information about these concepts or the variety of Generac products available, contact Generac Power Systems at
www.generac.com
or toll free at
1-844-ASK-GNRC
.
Author Background
Dan Barbersek is the Director of Energy Management Solutions for Generac Industrial Solutions with over 38 years of experience in the energy industry as an application engineer—including 18 years in the UPS industry—he has a thorough knowledge of power technologies, from the conventional to the cutting edge. He has served in the United States Navy, where he completed Electrician’s Mate “A” School, and is a member of IEEE, 7x24 User Group, EGSA and the North Carolina Healthcare Engineering Association.
Share This Article
Current
Articles
Microgrid Provides a Sustainable Solution Independent from the Grid
Temporary Microgrid Supplies Necessary Power for Construction Job Trailers
LPG: Propane vs. Petroleum Gas as a Generator Fuel
Understanding Power Outages
Comprehensive Emergency Power Plan
Article
Archive
April 2021
August 2021
February 2021
December 2020
January 2022
June 2021
October 2020
August 2020
June 2020
April 2020
February 2020
December 2019
October 2019
August 2019
June 2019
April 2019
March 2019
February 2019
January 2019
December 2018
November 2018
October 2018
September 2018
August 2018
July 2018
June 2018
May 2018
April 2018
December 2017
October 2017
January 2017
October 2016
June 2016
March 2016
December 2015
October 2015
August 2015
Mobile navigation
Call Us at 844-ASK-GNRC
All About
Generac Industrial Power
HVO
Hydrogen
Industrial Strength
Energy Management
Configured vs Standard
Generator Paralleling
Natural Gas Fuel
Natural Gas Reliability
Natural Gas Performance
Natural Gas Resources
Diesel Fuel
BI-FUEL™
Selecting the Best Fuel Option
Solutions By Industry
Data Centers
Healthcare
Senior Living Solutions
Emergency Power Plan Form
Municipal
Telecommunications
Education
Manufacturing
Small Business
Government
Professional Resources
Generator Specifying, Sizing and Comparison Tools
Generac City
Generac BIM Documents
Emissions Unit Converter
Heat Rate Calculator
Power Design Pro
Total Cost of Ownership Calculator
Information Resources
Case Studies
Video Gallery
News & Whitepapers
Industry News
PowerConnect Newsletter
Whitepapers
Continuing Education
Power Engineer Symposium
Professional Development Seminar Series (PDSS)
Product Documents
Brochures
Spec Sheets
Products
Battery Energy Storage
SBE500 Stationary Battery Energy Storage
SBE1000 Stationary Battery Energy Storage
Diesel Generators
Transfer Switches and Controllers
Power Zone Controllers
G-Panel Controller
Specification Text
TX Series Transfer Switches
PSTS Transfer Switches
Gaseous Generators
BI-FUEL™ Generators
Aftermarket Parts and Service
Webinars
Find a Distributor
Find Service
Careers
Contact Us